Package: DPpack 0.2.2

DPpack: Differentially Private Statistical Analysis and Machine Learning

An implementation of common statistical analysis and models with differential privacy (Dwork et al., 2006a) <doi:10.1007/11681878_14> guarantees. The package contains, for example, functions providing differentially private computations of mean, variance, median, histograms, and contingency tables. It also implements some statistical models and machine learning algorithms such as linear regression (Kifer et al., 2012) <https://proceedings.mlr.press/v23/kifer12.html> and SVM (Chaudhuri et al., 2011) <https://jmlr.org/papers/v12/chaudhuri11a.html>. In addition, it implements some popular randomization mechanisms, including the Laplace mechanism (Dwork et al., 2006a) <doi:10.1007/11681878_14>, Gaussian mechanism (Dwork et al., 2006b) <doi:10.1007/11761679_29>, analytic Gaussian mechanism (Balle & Wang, 2018) <https://proceedings.mlr.press/v80/balle18a.html>, and exponential mechanism (McSherry & Talwar, 2007) <doi:10.1109/FOCS.2007.66>.

Authors:Spencer Giddens [aut, cre], Fang Liu [ctb]

DPpack_0.2.2.tar.gz
DPpack_0.2.2.zip(r-4.5)DPpack_0.2.2.zip(r-4.4)DPpack_0.2.2.zip(r-4.3)
DPpack_0.2.2.tgz(r-4.4-any)DPpack_0.2.2.tgz(r-4.3-any)
DPpack_0.2.2.tar.gz(r-4.5-noble)DPpack_0.2.2.tar.gz(r-4.4-noble)
DPpack_0.2.2.tgz(r-4.4-emscripten)DPpack_0.2.2.tgz(r-4.3-emscripten)
DPpack.pdf |DPpack.html
DPpack/json (API)

# Install 'DPpack' in R:
install.packages('DPpack', repos = c('https://sgiddens.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sgiddens/dppack/issues

On CRAN:

3.65 score 3 stars 3 scripts 384 downloads 44 exports 38 dependencies

Last updated 1 months agofrom:0103183c50. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winNOTENov 20 2024
R-4.5-linuxNOTENov 20 2024
R-4.4-winNOTENov 20 2024
R-4.4-macNOTENov 20 2024
R-4.3-winNOTENov 20 2024
R-4.3-macNOTENov 20 2024

Exports:calibrateAnalyticGaussianMechanismcovDataAccesscovDPEmpiricalRiskMinimizationDP.CMSEmpiricalRiskMinimizationDP.KSTExponentialMechanismGaussianMechanismgenerate.loss.gr.hubergenerate.loss.hubergenerate.samplinghistogramDataAccesshistogramDPLaplaceMechanismLinearRegressionDPLogisticRegressionDPloss.cross.entropyloss.gr.cross.entropyloss.gr.squared.errorloss.squared.errormapXy.gr.linearmapXy.gr.sigmoidmapXy.linearmapXy.sigmoidmeanDataAccessmeanDPmedianDPphi.gaussianpooledCovDataAccesspooledCovDPpooledVarDataAccesspooledVarDPquantileDataAccessquantileDPregularizer.gr.l2regularizer.l2sdDPsvmDPtableDataAccesstableDPtune_classification_modeltune_linear_regression_modelvarDataAccessvarDPWeightedERMDP.CMS

Dependencies:classclicolorspacedplyre1071fansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmenloptrpillarpkgconfigproxyR6rbibutilsRColorBrewerRdpackrlangrmutilscalestibbletidyselectutf8vctrsviridisLitewithr