Package: DPpack 0.2.2
DPpack: Differentially Private Statistical Analysis and Machine Learning
An implementation of common statistical analysis and models with differential privacy (Dwork et al., 2006a) <doi:10.1007/11681878_14> guarantees. The package contains, for example, functions providing differentially private computations of mean, variance, median, histograms, and contingency tables. It also implements some statistical models and machine learning algorithms such as linear regression (Kifer et al., 2012) <https://proceedings.mlr.press/v23/kifer12.html> and SVM (Chaudhuri et al., 2011) <https://jmlr.org/papers/v12/chaudhuri11a.html>. In addition, it implements some popular randomization mechanisms, including the Laplace mechanism (Dwork et al., 2006a) <doi:10.1007/11681878_14>, Gaussian mechanism (Dwork et al., 2006b) <doi:10.1007/11761679_29>, analytic Gaussian mechanism (Balle & Wang, 2018) <https://proceedings.mlr.press/v80/balle18a.html>, and exponential mechanism (McSherry & Talwar, 2007) <doi:10.1109/FOCS.2007.66>.
Authors:
DPpack_0.2.2.tar.gz
DPpack_0.2.2.zip(r-4.5)DPpack_0.2.2.zip(r-4.4)DPpack_0.2.2.zip(r-4.3)
DPpack_0.2.2.tgz(r-4.4-any)DPpack_0.2.2.tgz(r-4.3-any)
DPpack_0.2.2.tar.gz(r-4.5-noble)DPpack_0.2.2.tar.gz(r-4.4-noble)
DPpack_0.2.2.tgz(r-4.4-emscripten)DPpack_0.2.2.tgz(r-4.3-emscripten)
DPpack.pdf |DPpack.html✨
DPpack/json (API)
# Install 'DPpack' in R: |
install.packages('DPpack', repos = c('https://sgiddens.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/sgiddens/dppack/issues
Last updated 1 months agofrom:0103183c50. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | NOTE | Nov 20 2024 |
R-4.5-linux | NOTE | Nov 20 2024 |
R-4.4-win | NOTE | Nov 20 2024 |
R-4.4-mac | NOTE | Nov 20 2024 |
R-4.3-win | NOTE | Nov 20 2024 |
R-4.3-mac | NOTE | Nov 20 2024 |
Exports:calibrateAnalyticGaussianMechanismcovDataAccesscovDPEmpiricalRiskMinimizationDP.CMSEmpiricalRiskMinimizationDP.KSTExponentialMechanismGaussianMechanismgenerate.loss.gr.hubergenerate.loss.hubergenerate.samplinghistogramDataAccesshistogramDPLaplaceMechanismLinearRegressionDPLogisticRegressionDPloss.cross.entropyloss.gr.cross.entropyloss.gr.squared.errorloss.squared.errormapXy.gr.linearmapXy.gr.sigmoidmapXy.linearmapXy.sigmoidmeanDataAccessmeanDPmedianDPphi.gaussianpooledCovDataAccesspooledCovDPpooledVarDataAccesspooledVarDPquantileDataAccessquantileDPregularizer.gr.l2regularizer.l2sdDPsvmDPtableDataAccesstableDPtune_classification_modeltune_linear_regression_modelvarDataAccessvarDPWeightedERMDP.CMS
Dependencies:classclicolorspacedplyre1071fansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmenloptrpillarpkgconfigproxyR6rbibutilsRColorBrewerRdpackrlangrmutilscalestibbletidyselectutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Differentially Private Covariance | covDP |
Exponential Mechanism | ExponentialMechanism |
Gaussian Mechanism | GaussianMechanism |
Differentially Private Histogram | histogramDP |
Laplace Mechanism | LaplaceMechanism |
Privacy-preserving Linear Regression | LinearRegressionDP |
Privacy-preserving Logistic Regression | LogisticRegressionDP |
Differentially Private Mean | meanDP |
Differentially Private Median | medianDP |
Differentially Private Pooled Covariance | pooledCovDP |
Differentially Private Pooled Variance | pooledVarDP |
Differentially Private Quantile | quantileDP |
Differentially Private Standard Deviation | sdDP |
Privacy-preserving Support Vector Machine | svmDP |
Differentially Private Contingency Table | tableDP |
Privacy-preserving Hyperparameter Tuning for Binary Classification Models | tune_classification_model |
Privacy-preserving Hyperparameter Tuning for Linear Regression Models | tune_linear_regression_model |
Differentially Private Variance | varDP |